Enhanced Visible Light Photocatalytic Activity of Br-Doped Bismuth Oxide Formate Nanosheets.

نویسندگان

  • Xin Feng
  • Wen Cui
  • Junbo Zhong
  • Xiaoying Liu
  • Fan Dong
  • Yuxin Zhang
چکیده

A facile method was developed to enhance the visible light photocatalytic activity of bismuth oxide formate (BiOCOOH) nanosheets via Br-doping. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, the Brunauer-Emmett-Teller surface area, UV-vis diffuse reflectance spectroscopy, photoluminescence spectra, and N₂ adsorption-desorption isotherms measurement. The Br- ions replaced the COOH- ions in the layers of BiOCOOH, result in a decreased layer distance. The photocatalytic activity of the as-prepared materials was evaluated by removal of NO in qir at ppb level. The results showed that the Br-doped BiOCOOH nanosheets showed enhanced visible light photocatalytic activtiy with a NO removal of 37.8%. The enhanced activity can be ascribed to the increased visible light absorption and the promoted charge separation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures.

The synthesis and self-assembly of hierarchical architectures from nanoscale building blocks with unique morphology, orientation and dimension have opened up new opportunities to enhance their functional performances and remain a great challenge. This work represents tunable synthesis of various types of 3D monodisperse in situ N-doped (BiO)(2)CO(3) hierarchical architectures composed of 2D sin...

متن کامل

Biomimetic layer-by-layer deposition assisted synthesis of Cu, N co-doped TiO2 nanosheets with enhanced visible light photocatalytic performance.

In this paper, a Cu, N co-doped TiO2 nanosheet with increased visible light photocatalytic activity was successfully synthesized using a biomimetic layer-by-layer deposition process. The polymer, branched-polyethyleneimine (b-PEI) was used as an induction agent for the hydrolysis of titanium bis(ammonium lactato)-dihydroxide (Ti-BALDH) as well as for a nitrogen resource, and the graphene oxide ...

متن کامل

Graphitic Carbon Nitride/Reduced Graphene Oxide/Silver Oxide Nanostructures with Enhanced Photocatalytic Activity in Visible Light

Visible light active graphitic carbon nitride/reduced graphene oxide/silver oxide nanocomposites with a p-n heterojunction structure were synthesized by chemical deposition methods. Prepared samples were characterized by different physico-chemical technics such as XRD, FTIR, SEM, TEM and DRS. Photocatalytic activity investigated by analyzing the Acid blue 92 (AB92) concentration during the time...

متن کامل

Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity.

Nitrogen self-doped TiO(2) nanosheets with exposed {001} facets (ca. 67%) were synthesized by solvothermal treatment of TiN in a HNO(3)-HF ethanol solution and exhibited much higher visible-light photocatalytic H(2)-production activity than nitrogen doped TiO(2) microcrystallites with exposed {001} facets (ca. 60%) by a factor of 4.1.

متن کامل

New insight into the enhanced visible light photocatalytic activity over boron-doped reduced graphene oxide.

Boron-doped reduced graphene oxide (B-RGO) synthesized by a facile one-step reflux route is able to exhibit significantly higher photocatalytic activity than non-doped RGO under visible light irradiation. New insights accounting for this photocatalytic activity improvement are discussed, which is distinctly different from the case of B-RGO nanoribbons under UV light irradiation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 20 10  شماره 

صفحات  -

تاریخ انتشار 2015